ÉCOLE TECHNOLOGIQUE DES PLASMAS FROIDS 15^e JOURNÉES DU RÉSEAU

28 septembre - loctobre 2020, Saint-Dié-des-Vosges

Structures et mise en œuvre des Alimentations Impulsionnelles

Antoine Belinger

belinger@laplace.univ-tlse.fr

Décharge impulsionnelle : applications

Flow control

Moreau, J. Appl. Phys. 2015, https://doi.org/10.1063/1.4927844

(c) VAT Chowdhury, Aerospace 2020, https://doi.org/10.3390/aerospace 7060082

10.1143/JJAP.50.08JF14

Intérêt d'une alimentation impulsionnelle

Exemple DBD production d'ozone :

Williamson – 2006 J Phys D -http://dx.doi.org/10.1088/0022-3727/39/20/016

16

Average Power (W)

10

20

25

30

Pulse idéal

- V_m le plus grand possible
- f la plus grande possible
- t_{pulse} le plus petit possible

• $t_r \rightarrow 0$

Journées du réseau Plasma Froid 2020

- 1. Comportement électrique de la décharge
- 2. Conception d'une alimentation
- 3. Comparaison des structures d'alimentations existantes
- 4. Choix des composants
- 5. Eléments parasites

Comportement décharge à la PA

Adaptation d'impédance

Transfert optimal de puissance

 $\mathbf{Z}_{alim} = \mathbf{Z}_{L} \quad \forall t$

- $Z_1 >> 50 \Omega$ plasma froid
- $Z_1 << 50 \Omega$ si thermique
- Z₁ très non linéaire
- Impossible modifier Z_{alim} rapidement
- Transfert de puissance

Pulse

- 1. Comportement électrique de la décharge
- 2. Conception d'une alimentation
- 3. Comparaison des structures d'alimentations
- 4. Choix des composants
- 5. Eléments parasites

Alimentation impulsionnelle

• But : transférer Energie rapidement

 $E = \int P(t)dt$

- Puissance instantanée importante
- >Transfère direct difficile depuis réseau
- >Nécessité de stocker l'énergie
- t_{stock} >> t_{pulse}
- f faibles → Max qq kHz

Stockage de l'énergie

• Pas de **connections directes**

Elévation la tension → transformateur avant ou après le stockage

Elévation de la tension

Solution 1

- Interrupteurs HT
- Isolation
- + Contrôle direct de la décharge

+ Interrupteurs BT

- Isolation
- Contrôle indirect de la décharge

Solution 2

Solution 1 vs Solution 2

- Stockage plasma 0 V_{DC} BT Interrupteur **BT**
- Elévation tension → source DC

Stockage capacitif

- Elévation tension et stockage → transformateur
- Stockage : inductance magnétisante

Stockage capacitif vs stockage inductif

Stockage capacitif

- Décharge impulsionnelle
- Décharge Spark

Stockage inductif

- Allongement durée décharge
- Décharge Glow

Stockage capacitif vs stockage inductif : Sparkjets

Actionneur pour contrôle d'écoulement

• Jets à grande vitesse > 200 m/s

• f= 5/ 10 kHz

• V_{th} = 5 kV

Comparaison stockage inductif et stockage capacitif

- Stockage capacitif \rightarrow jet à grande vitesse
- Stockage inductif \rightarrow jet long
- Stockage inductif → Problème thermique le sparkjet

Journées du réseau Plasma Froid 2020

Stockage inductif et alimentation impulsionnelle

Inductance :

≻ t_r ultra rapide → ouverture
interrupteur

≻t_f très lente

Inutilisable pour le stockage

L si contact direct avec décharge

Portrait de l'alimentation

- 1. Comportement électrique de la décharge
- 2. Conception d'une alimentation
- 3. Comparaison des structures d'alimentations
- 4. Choix des composants
- 5. Eléments parasites

Générateur de Marx

- Chargement en parallèle
- Déchargement en série
- n Condensateurs \rightarrow Vs = nE
- →Limite la tension de la source primaire

Pont de Marx : exemple CEA

- Génération de **THT** (> 100 kV) grâce au nC
- t_r ∕
- Charge des nC limite f

Pulse Forming Networks

Préalablement chargé par une source HT

Pulse Forming Network

- →Signal rectangulaire
- $\rightarrow t_r << t_{pulse}$

Pulse Forming Network

C₁₂ se décharge immédiatement à Vm/2
 →C₁₁ l'aide à se maintenir à Vm/2
 →... jusqu'à ce que C₁ se décharge complétement

 \rightarrow Amplitude du pulse : 1/2 V_m

Lignes de transmissions

Câble coaxial / ligne de transmission
→L et C distribués linéairement

 $\rightarrow Z = \sqrt{\frac{L}{c}} = \sqrt{\frac{\mu}{\epsilon}}$

→onde se propage dans la lignes

 Temps de propagation T₀ =t_{pulse} : dépend de la longueur de la ligne

Huiskamp, PSST 2020, https://doi.org/10.1088/1361-6595/ab53c5

Lignes de Transmissions ou PFL

PFL Université de Pau :

- $E_{pulse} < 10 \text{ mJ} / V_{pulse} :26 \text{ kV}$
- Durée de Pulse 600 ps / t_r=68 ps

Coaxial : 50 Ω / 25 cm

Pecastaing, IEEE Trans Plas. Sci. 2006, <u>10.1109/TPS.2006.883346</u>

PFN vs PFL

Principe de fonctionnement similaire : Pulse Rectangulaire

- C et L \rightarrow Composant
- Energie car C
- t_{pulse} long
- t_r << t_{pulse}
 Décharge de type arc / Spark

- C et L distribué
- Energie 🍾
- t_{pulse} court (pour 100 ns ~ 10 m de coaxial)
- t_r << t_{pulse}
- Décharge de type streamer

Magnetic Pulse Compression : principe

Magnetic Pulse Compression

- Saturation tout composant inductif : transformateur
- Dimensionnement des switchs magnétiques <u>complexe</u>

Saturation magnétique → I_{pulse} ∧ → P ∧

- f ↗
- HT à fort taux de répétition
- possibilité arc impulsionnel

Journées du réseau Plasma Froid 2020

Synthèse structures

- 1. Comportement électrique de la décharge
- 2. Conception d'une alimentation
- 3. Comparaison des structures d'alimentations
- 4. Choix des composants
- 5. Eléments parasites

2 type d'interrupteurs

Gaz

Semi-conducteur

Paramètres importants :

- Tenue en tension V_{max}
- Fréquence de répétition f
- Contrôle de l'amorçage

Jitter

Interrupteur à gaz

Pashen

- $V_{AK} < V_{th} \rightarrow$ interrupteur ouvert
- $V_{AK} > V_{th} \rightarrow$ interrupteur fermé
- Une fois fermé il s'ouvre quand coura trop faible
- Dépend de P et du gaz
- →Alim contrôle le temps d'amorçage

Interrupteur à gaz contrôlé

Faciliter l'amorçage du gaz :→ électrode intermédiaire polarisée ou pré-ioniser le gaz

Xiaofeng Jiang, RSI 2019, https://doi.org/10.1063/1.5113704

Interrupteur à gaz contrôlé

- Utilisable THT qq 100 kV
- Electrode intermédiaire → contrôle précis de l'amorçage
- Relaxation du gaz \rightarrow f faible
- Pas de contrôle de l'extinction \rightarrow I = 0

Xiaofeng Jiang, RSI 2019, https://doi.org/10.1063/1.5113704

Interrupteur de type semi-conducteur commandé

 Thyristor : → THT, faible fréquence pas de commande d'ouverture

• MOS: $\rightarrow V_{max} = 2 kV$ $\rightarrow f_{max} = qq 100 kHz$

IGBT:
 →V_{max} > 10 kV
 →f_{max} = qq 10 kHz

 $\rightarrow I_{max} > qq kA$

Interrupteur commercial à base de MOSFETs

Utilisation avec une DBD

- DBD \rightarrow comportement capacitif
- Alim directement reliée à DBD
- *dV/dt* ou (t_r , V) impose I_{pulse}
- Stockage \rightarrow indirect dans DBD

Synthèse structure + interrupteur

- 1. Comportement électrique de la décharge
- 2. Conception d'une alimentation
- 3. Comparaison des structures d'alimentations
- 4. Choix des composants
- 5. Eléments parasites

Elément parasite : câble HT

• Câbles classique principalement inductif

- L A avec la longueur, ajoute des oscillations
- L ↗ le temps de montée t_r
- + L \sim le courant max I_{pulse}
- L ✓ la durée de la décharge
- Préférer des câbles coaxiaux à impédance connue

Journées du réseau Plasma Froid 2020

Capacités parasites des interupteurs

Journées du réseau Plasma Froid 2020

Rendement et capacités parasites

Conclusion

- Impossible d'avoir une bonne adaptation \rightarrow oscillations
- **Stockage** de E pour faire un pulse \rightarrow **capacitif**
- t_{pulse} très court \rightarrow ligne de transmission
- V très élevé → pont de Marx
- Interrupteur à gaz \rightarrow THT mais f \searrow
- Prise en compte les éléments parasites dans la conception