

Underwater electrical breakdown: from discharge visualization to modelization

Benjamin Dufour, Cathy Rond, Arlette Vega, Xavier Duten LSPM-CNRS, Université Paris 13, 93430 Villetaneuse, France

Amsterdam but

00

COVID

Overview

Objectives

- To convert electrical energy into useful chemical species
 - → Environmental applications: water and effluents treatment
 - \rightarrow Material applications: nanomaterial synthesis

Frame of work: a fundamental approach

- To identify and to model the physical & chemical processes involved during an electrical discharge in liquid water: Collaboration with
 - \rightarrow During the pre-breakdown stage (initiation + propagation) \rightarrow the CWI at
 - \rightarrow During the breakdown stage
 - \rightarrow During the post-breakdown stage

Electrical pulse	12 kV
Rising front	40 ns
Electrode diameter	100 µm
 Electrode gap 	2 mm
• $\begin{bmatrix} t_{bk}, t_{pbk} \end{bmatrix}$	330 ns
• $\left[t_{bk}, t_{f}\right]$	$\geq 1 \text{ ms}$

• Transient current \rightarrow Vaporization of water [1] • Width of the current peak (330 ns) = power injection time interval

Cathode mode <u>Thermal regime</u>

Pre-breakdown

- Initiation by thermal effects
- Bush structure
- Vaporization (transient current)
- Streamer subsonic propagation mechanism
- 2. Breakdown
 - Highly ionized vapour channel $(spark) \rightarrow LTP$ formation
 - High current peak (~20 A)
 - Shock wave formation
- 3. Post-breakdown
 - Formation of pure vapor bubble
 - Expansion until maximum radius
 - Several contraction/expansion cycles

Anode mode

Mechanical regime

1. Pre-breakdown

- Initiation by pre-existing microbubbles ? [2]
- Filamentary structure,
- No vaporization, time scale too short
- Streamer supersonic propagation mechanism
- → 2. Breakdown
 - Highly ionized gas-vapor channel (stronger spark) \rightarrow LTP formation
 - High current peak (up to 70 Å)
 - Shock wave formation (stronger than cathode mode)
 - 3. Post-Breakdown
 - Formation of bubble with few vapor
 - Expansion until maximum radius
 - Collapse without rebounds
 - Shock wave emitted at collapse

Breakdown

Post-breakdown

<u>Kinetic global model</u>

- superelastic collisions

