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Overview Electrical signals

Objectives

. . . . Electrical pulse
* To convert electrical energy into useful chemical species
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— Environmental applications: water and effluents treatment
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— Material applications: nanomaterial synthesis
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Frame of work: a fundamental approach [tbk, tpbk]
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* To identify and to model the physical & chemical processes involved during an
electrical discharge in liquid water: Collaboration with

— During the pre-breakdown stage (initiation + propagation) = the CWI at | | " Transient current = Vaporization of water [1]
— During the breakdown stage Amsterdam but .... | | | | ] = Width of the current peak (330 ns)
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— During the post-breakdown stage COVID e 9 power injection time interval
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mechanism > > = Streamer supersonic propagation
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2. Breakdown breakdown  (II) mechanism
= Highly ionized vapour channel (D Anode mode 2. Breakdown
(spark) = LTP formation Highly ionized gas-vapor channel
" High current peak (~20 A) (stronger spark) =2 LTP formation
= Shock wave formation : '
> Breakdown volume: constant Post-breakdown volume : bubble dynamic High current peak (.up to 70 A)
3. Post-breakdown Shock wave formation (stronger than
" TFormation of pure vapor bubble H;0zq) H,0(q , : cathode mode)
" Expansion until maximum radius BL & 3. Post-Breakdown
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Several contraction/expansion [Nl BN Ry = 100um = cte > V2K = ¢ R =flt) DV = £(2) " Formation of bubble with few vapor
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cycles ¢y ¢y " Expansion until maximum radius

H.0 = Collapse without rebounds
2=(aq)

" Shock wave emitted at collapse

Breakdown Post-breakdown
Kinetic global model - Modeling approach
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Hypothesis R 1. Radius evolution 3. Equilibrium radius - oo |

Heavy species and electrons = Maxwellian EDF o —— " Rayleigh-Plesset: incompressible (Infinite asymptotic radius [3]) 2.

P min

Time to 40 ns

Injected power determined from electrical signals | e " Gilmore: compressible
2. Pressure evolution

Thermal non equilibrium: T, and T, | | | o
Bubble interface 4R 20 Ry 3"

00 won (liquid side) — PL(t) = Pp(t) - R ouR Pg(t) = P,(Ty) + Py, X (?) <— DBubble interior
Time (s)

Spec%es and chergy balance LU lions Cathode mode: thermal processes Anode mode: mechanical processes
Continuity equation solved for each species

Initial composition = Pre-dissociated water vapor and electron seed .

—— Experimental data Experimental data
—— Gilmore —— Rayleigh-Plesset

Total energy equation (including losses by conduction) T T R e —Ginoe
= Collapse stage OK ™ { ® Collapse time OK
" But At=13 us - , “1 = But maximum

superelastic collisions o 5 o | A |, = Maybe wrong \/ 1 radius slightly

Electron energy balance=> Production and consumption through elastic, inelastic and

19% . ; . .
gamma choice ? __ | | overestimated

Kine tiC S Cheme = Neutral reactions (Tg)

31 species involved in 628 volume reactions Eeconi et (e o R, S M
Time (us)

Includes three-body and pressure dependent reactions et da
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Gamma - 1 B ] ~—"Experimental data _ | Su ers Onic
—— Gamma = 9/7 = 1,286 —— Gilmore (dR = -2316 m/s) ] p
Gamma=7/5=1,4 v -

_- —— Rayleigh-Plesset (dR .= -3655 m/s)

w
o
o

velocity during

N

o

o
1

* Gamma depends
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Compressibility
of the liquid
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neglected

Molar fractions: Molar fractions: Molar fractions: Gamma
neutrals cations excited species influence
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el A 1 Energy balance cathode: Aitken [4]
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= Unphysical = Atomic species (O, = H,O" quickly " Majority of O('D) £ = 597% of W, @ the discharge enctgy 1S used to vapotize
En =111% of W; 1wl — — —
temperature peak at H) dominates = formed by charge (>1,2¢-2) produced by Ey = 29,2% 05‘ W, thIeI liquid and Pg = £, P3 w at R = Ry [3)]
1¢-11s High dissociation transfer e- Impact excitation Er = 4nPy Evap/ 3RTyRy
, o y 55,5% of W; 15,3% of W; 0,81% of W; 28,3% of W; . .
= Slope discontinuity rate of H,O = H* and O* peaks = H" at least 2 odm 78.4% of Ey 21,6% of Ey O Bubble energy conserved during expansion:
(Cil‘ClGd) ° appear 60-70ns after lower than all other

2+ and OH+ eXCit€d (because Eb = 0,587 mJ Esw = 20,4 mJ
higher bar
On progress results ... igher barrien 31 32

Q Shock wave energy easily deduced from:

Conclusion and outlook

= Casdorne o The model breaks
,,,,,,,, Fit by R=A.EY3 | We need a

o for anode because
|— it 1is not initiated —
by thermal

1. To reduce the kinetic scheme identitying the most significant production and destruction

adius (m

Validation of Kattan-Denat

pathways for the species of interest 2 PumpKin software + hypothesis for cathode stage 1T ——
2. To couple the post-breakdown radius evolution with chemistry and diffusion already @) by plotting EX = A x R3,

implemented in the global model ; v processes

new energy
model for
anode regime !
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