

Potentialities of plasma multi jets devices at atmospheric pressure for the performance improvement of combustion.

F. Manseur¹, A. Stancampiano¹, S. Dozias¹, M. Wartel¹, T. Boushaki², F. Halter², J.M. Pouvesle¹, P. Escot Bocanegra¹, E. Robert¹

¹GREMI UMR 7344 CNRS/Université d'Orléans, Orléans, 45067, France ²ICARE CNRS UPR3021 & Université d'Orléans, 1C, Av. de la Recherche Scientifique, 45071 Orléans, France

Conclusions

Reactive species are produced in higher quantity as the diameter of the ring decreases, and as the voltage rises, also when the ring is positioned at h=+1 cm from the injector.

To combine a plasma multi jets with a laminar lean premixed flame.

□ The diagnostics are still very challenging for multi jets owing to the large uncertainly, Spectra of the free radicals should be more investigated for excited species OH, NO*...

Acknowledgement

The PhD of FM is supported by a "Region Centre Val de Loire" fellowship. This work is also supported by the Region Centre Val de Loire APR IR program (project CAPRI 201800124137).

References

[1] Yinguang Ju et al, Plasma Chem Plasma Process, 36:85–105 (2016)